Selected Publications
2023
Journal Articles
Eichner, F.; Turan, E.; Sauer, J.; Bender, M.; Behrens, S. (2023). Supported silver and copper catalysts in the oxidative dehydrogenation of methanol to formaldehyde: a comparative study under industrially relevant conditions. Catalysis Science & Technology. doi:10.1039/D2CY01405J
Hakimioun, A. H.; Vandegehuchte, B. D.; Curulla-Ferre, D.; Kaźmierczak, K.; Plessow, P. N.; Studt, F. (2023). Metal–Support Interactions in Heterogeneous Catalysis: DFT Calculations on the Interaction of Copper Nanoparticles with Magnesium Oxide. ACS Omega. doi:10.1021/acsomega.3c00502
Vajglová, Z.; Gauli, B.; Mäki-Arvela, P.; Simakova, I. L.; Kumar, N.; Eränen, K.; Tirri, T.; Lassfolk, R.; Peurla, M.; Doronkin, D. E.; Murzin, D. Y. (2023). Co-processing of fossil feedstock with lignin-derived model compound isoeugenol over Fe-Ni/H-Y-5.1 catalysts. Journal of Catalysis, 421, 101–116. doi:10.1016/j.jcat.2023.03.016
Marchuk, V.; Huang, X.; Grunwaldt, J.-D.; Doronkin, D. E. (2023). Structure sensitivity of alumina- and zeolite-supported platinum ammonia slip catalysts. Catalysis Science & Technology. doi:10.1039/D2CY02095E
Shirsath, A. B.; Mokashi, M.; Lott, P.; Müller, H.; Pashminehazar, R.; Sheppard, T.; Tischer, S.; Maier, L.; Grunwaldt, J.-D.; Deutschmann, O. (2023). Soot Formation in Methane Pyrolysis Reactor: Modeling Soot Growth and Particle Characterization. The Journal of Physical Chemistry A, 127 (9), 2136–2147. doi:10.1021/acs.jpca.2c06878
Dutzi, J.; Boukis, N.; Sauer, J. (2023). Process Effluent Recycling in the Supercritical Water Gasification of Dry Biomass. Processes, 11 (3), Art.-Nr.: 797. doi:10.3390/pr11030797
Machoke, A. G. F.; Arias, A. M.; Baracchini, G.; Rubin, M.; Baser, H.; Weissenberger, T.; Dittmeyer, R.; Weber, A.; Hartmann, M.; Schwieger, W. (2023). MFI Type Zeolite Aggregates with Nanosized Particles via a Combination of Spray Drying and Steam-Assisted Crystallization (SAC) Techniques. Catalysts, 13 (3), Art.-Nr.: 536. doi:10.3390/catal13030536
Sheikh, K. A.; Drexler, R.; Zevaco, T. A.; Sauer, J.; Bender, M. (2023). Hydrogenation of Carbon Monoxide in the Liquid Phase: Influence of the Synthetic Methods on Characteristics and Activity of Hydrogenation Catalysts. Catalysts, 13 (3), 482. doi:10.3390/catal13030482
Mockenhaupt, B.; Schwiderowski, P.; Jelic, J.; Studt, F.; Muhler, M.; Behrens, M. (2023). High-Pressure Pulsing of Ammonia Results in Carbamate as Strongly Inhibiting Adsorbate of Methanol Synthesis over Cu/ZnO/AlO. The Journal of Physical Chemistry C, 127 (7), 3497–3505. doi:10.1021/acs.jpcc.2c08823
Zhao, D.; Gao, M.; Tian, X.; Doronkin, D. E.; Han, S.; Grunwaldt, J.-D.; Rodemerck, U.; Linke, D.; Ye, M.; Jiang, G.; Jiao, H.; Kondratenko, E. V. (2023). Effect of Diffusion Constraints and ZnOx Speciation on Nonoxidative Dehydrogenation of Propane and Isobutane over ZnO-Containing Catalysts. ACS Catalysis, 13, 3356–3369. doi:10.1021/acscatal.2c05704
Parku, G. K.; Krutof, A.; Funke, A.; Richter, D.; Dahmen, N. (2023). Using Fractional Condensation to Optimize Aqueous Pyrolysis Condensates for Downstream Microbial Conversion. Industrial and Engineering Chemistry Research, 62 (6), 2792–2803. doi:10.1021/acs.iecr.2c03598
Kordus, D.; Jelic, J.; Lopez Luna, M.; Divins, N. J.; Timoshenko, J.; Timoshenko, J.; Chee, S. W.; Rettenmaier, C.; Kröhnert, J.; Kühl, S.; Trunschke, A.; Trunschke, A.; Schlögl, R.; Studt, F.; Roldan Cuenya, B. (2023). Shape-Dependent CO Hydrogenation to Methanol over CuO Nanocubes Supported on ZnO. Journal of the American Chemical Society, 145 (5), 3016–3030. doi:10.1021/jacs.2c11540
Borgmann, L. M.; Johnsen, S.; Santos de Oliveira, C.; Martins de Souza e Silva, J.; Li, J.; Kirchlechner, C.; Gomard, G.; Wiegand, G.; Hölscher, H. (2023). Porous polymeric microparticles foamed with supercritical CO 2 as scattering white pigments. Bioinspiration & Biomimetics. doi:10.1088/1748-3190/acb899
Niethammer, B.; Arnold, U.; Sauer, J. (2023). Suppressing the aromatic cycle of the dimethyl ether to hydrocarbons reaction on zeolites. Applied Catalysis A: General, 651, Art.-Nr.: 119021. doi:10.1016/j.apcata.2023.119021
Sarma, B. B.; Jelic, J.; Neukum, D.; Doronkin, D. E.; Huang, X.; Studt, F.; Grunwaldt, J.-D. (2023). Tracking and Understanding Dynamics of Atoms and Clusters of Late Transition Metals with In-Situ DRIFT and XAS Spectroscopy Assisted by DFT. The Journal of Physical Chemistry C. doi:10.1021/acs.jpcc.2c07263
Michler, T.; Wippermann, N.; Toedter, O.; Niethammer, B.; Otto, T.; Arnold, U.; Pitter, S.; Koch, T.; Sauer, J. (2023). Corrigendum to “Gasoline from the bioliq® process: Production, characterization and performance” [Fuel Processing Technology 206 (2020) 106476]. Fuel Processing Technology, 240, Art.Nr. 107577. doi:10.1016/j.fuproc.2022.107577
Plessow, P. N.; Studt, F. (2023). Cooperative Effects of Active Sites in the MTO Process: A Computational Study of the Aromatic Cycle in H-SSZ-13. ACS Catalysis, 13 (1), 624–632. doi:10.1021/acscatal.2c04694
Evers, J.; Klapötke, T. M.; Beck, W.; Völkl, M. B. R.; Oehlinger, G.; Köppe, R.; Zimina, A.; Wolf, S. (2023). PdCl(NO) – an iconic compound with corrugated PdCl octagons built up by PdCl(NO) moieties. Zeitschrift für anorganische und allgemeine Chemie, Art.-Nr.: e202200337. doi:10.1002/zaac.202200337
Klag, L.; Sheppard, T. L.; Grunwaldt, J.-D. (2023). An Advanced Characterization Toolbox for Selective Olefin Oxidation Catalysts. ChemCatChem, 15 (3), Art.-Nr.: e202201276. doi:10.1002/cctc.202201276
Bodziony, F.; Wörner, M.; Marschall, H. (2023). The stressful way of droplets along single fibre strands : A computational analysis. Physics of Fluids, 35 (1), Art.-Nr.: 012110. doi:10.1063/5.0131032
Wu, S.-M.; Hwang, I.; Osuagwu, B.; Will, J.; Wu, Z.; Sarma, B. B.; Pu, F.-F.; Wang, L.-Y.; Badura, Z.; Zoppellaro, G.; Spiecker, E.; Schmuki, P. (2023). Fluorine Aided Stabilization of Pt Single Atoms on TiO Nanosheets and Strongly Enhanced Photocatalytic H Evolution. ACS Catalysis, 13, 33–41. doi:10.1021/acscatal.2c04481
Fan, Y.; Meyer, L.; Gong, M.; Krause, B.; Hornung, U.; Dahmen, N. (2023). Understanding the fate of nitrogen during catalytic hydrothermal liquefaction of sewage sludge. Fuel, 339, Art.-Nr.: 126948. doi:10.1016/j.fuel.2022.126948
Sarma, B. B.; Maurer, F.; Doronkin, D. E.; Grunwaldt, J.-D. (2023). Design of Single-Atom Catalysts and Tracking Their Fate Using Operando and Advanced X-ray Spectroscopic Tools. Chemical Reviews, 123 (1), 379–444. doi:10.1021/acs.chemrev.2c00495
Zhang, R.; Cao, Y.; Doronkin, D. E.; Ma, M.; Dong, F.; Zhou, Y. (2023). Single-atom dispersed Zn-N3 active sites bridging the interlayer of g-C3N4 to tune NO oxidation pathway for the inhibition of toxic by-product generation. Chemical Engineering Journal, 454 (Part 1), Art.-Nr.: 140084. doi:10.1016/j.cej.2022.140084
Kant, P.; Trinkies, L. L.; Gensior, N.; Fischer, D.; Rubin, M.; Alan Ozin, G.; Dittmeyer, R. (2023). Isophotonic reactor for the precise determination of quantum yields in gas, liquid, and multi-phase photoreactions. Chemical Engineering Journal, 452, Art.-Nr.: 139204. doi:10.1016/j.cej.2022.139204
2022
Journal Articles
Behrendt, G.; Prinz, N.; Wolf, A.; Baumgarten, L.; Gaur, A.; Grunwaldt, J.-D.; Zobel, M.; Behrens, M.; Mangelsen, S. (2022). Substitution of Copper by Magnesium in Malachite: Insights into the Synthesis and Structural Effects. Inorganic Chemistry, 61 (49), 19678–19694. doi:10.1021/acs.inorgchem.2c01976
Zha, S.; Sharapa, D. I.; Liu, S.; Zhao, Z.-J.; Studt, F. (2022). Modeling CoCu Nanoparticles Using Neural Network-Accelerated Monte Carlo Simulations. The Journal of Physical Chemistry A, 126 (50), 9440–9446. doi:10.1021/acs.jpca.2c07888
Fuchs, C.; Arnold, U.; Sauer, J. (2022). Effect of nickel loading on fuel production via heterogeneously catalyzed oligomerization of methanol‐based olefins. Chemie Ingenieur Technik, 94 (9), 1215–1215. doi:10.1002/cite.202255176
Virt, M.; Arnold, U. (2022). Effects of Oxymethylene Ether in a Commercial Diesel Engine. Cognitive Sustainability, 1 (3). doi:10.55343/cogsust.20
Carriel Schmitt, C.; Rapp, M.; Voigt, A.; De Carvalho, M. dos S. (2022). Selective Detection of Aromatic Compounds with a Re-Designed Surface Acoustic Wave Sensor System Using a Short Packed Column. Coatings, 12 (11), Art.-Nr.: 1666. doi:10.3390/coatings12111666
Semmel, M.; Steiner, L.; Bontrup, M.; Sauer, J.; Salem, O. (2022). Catalyst screening and reaction kinetics of liquid phase DME synthesis under reactive distillation conditions. Chemical Engineering Journal, 455, Art.Nr. 140525. doi:10.1016/j.cej.2022.140525
Freund, H.; Sauer, J.; Wachsen, O. (2022). Wie verändert sich die Reaktions‐ und Reaktortechnik durch die Elektrifizierung chemischer Prozesse?. Chemie Ingenieur Technik, 94 (5), 615. doi:10.1002/cite.202270502
Yang, M.; Yu, J.; Zimina, A.; Sarma, B. B.; Pandit, L.; Grunwaldt, J.-D.; Zhang, L.; Xu, H.; Sun, J. (2022). Probing the Nature of Zinc in Copper‐Zinc‐Zirconium Catalysts by Operando Spectroscopies for CO2 Hydrogenation to Methanol. Angewandte Chemie International Edition, 62 (7), Art.Nr. e202216803. doi:10.1002/anie.202216803
Borchers, M.; Lott, P.; Deutschmann, O. (2022). Selective Catalytic Reduction with Hydrogen for Exhaust gas after-treatment of Hydrogen Combustion Engines. Topics in Catalysis. doi:10.1007/s11244-022-01723-1
Farpón, M. G.; Henao, W.; Plessow, P. N.; Andrés, E.; Arenal, R.; Marini, C.; Agostini, G.; Studt, F.; Prieto, G. (2022). Rhodium Single‐Atom Catalyst Design through Oxide Support Modulation for Selective Gas‐Phase Ethylene Hydroformylation. Angewandte Chemie - International Edition, 62 (1), Art.-Nr.: e202214048. doi:10.1002/anie.202214048
Zimmermann, J.; Chiaberge, S.; Iversen, S. B.; Raffelt, K.; Dahmen, N. (2022). Sequential Extraction and Characterization of Nitrogen Compounds after Hydrothermal Liquefaction of Sewage Sludge. Energy & Fuels, 36 (23), 14292–14303. doi:10.1021/acs.energyfuels.2c02622
Chen, S.; Huang, X.; Schild, D.; Wang, D.; Kübel, C.; Behrens, S. (2022). Pd–In intermetallic nanoparticles with high catalytic selectivity for liquid-phase semi-hydrogenation of diphenylacetylene. Nanoscale, 14 (47), 17661–17669. doi:10.1039/D2NR03674F
Perret, L.; Boukis, N.; Sauer, J. (2022). Methods of reaction and reactor engineering to adjust product ratios and increase efficiency of syngas fermentation with Clostridium ljungdahlii. Chemie Ingenieur Technik, 94 (9), 1252. doi:10.1002/cite.202255034
Seitz, L. C.; Doronkin, D. E.; Hauschild, D.; Casapu, M.; Zengel, D.; Zimina, A.; Kreikemeyer-Lorenzo, D.; Blum, M.; Yang, W.; Grunwaldt, J.-D.; Heske, C.; Weinhardt, L. (2022). Direct Observation of Reactant, Intermediate, and Product Species for Nitrogen Oxide-Selective Catalytic Reduction on Cu-SSZ-13 Using In Situ Soft X-ray Spectroscopy. The Journal of Physical Chemistry C, 126 (49), 20998–21009. doi:10.1021/acs.jpcc.2c04736
Kuhn, C.; Düll, A.; Rohlfs, P.; Tischer, S.; Börnhorst, M.; Deutschmann, O. (2022). Iron as recyclable energy carrier: Feasibility study and kinetic analysis of iron oxide reduction. Applications in Energy and Combustion Science, 12, Art.-Nr.: 100096. doi:10.1016/j.jaecs.2022.100096
Treu, P.; Huber, P.; Plessow, P. N.; Studt, F.; Saraçi, E. (2022). Lewis acid Sn-Beta catalysts for the cycloaddition of isoprene and methyl acrylate: a greener route to bio-derived monomers. Catalysis Science & Technology, 12 (24), 7439–7447. doi:10.1039/D2CY01337A
Sun, X.; Yu, J.; Cao, S.; Zimina, A.; Sarma, B. B.; Grunwaldt, J.-D.; Xu, H.; Li, S.; Liu, Y.; Sun, J. (2022). In Situ Investigations on Structural Evolutions during the Facile Synthesis of Cubic α-MoC Catalysts. Journal of the American Chemical Society, 144 (49), 22589–22598. doi:10.1021/jacs.2c08979
Guo, B.; Hornung, U.; Zhang, S.; Dahmen, N. (2022). Techno‐Economic Assessment of a Microalgae Biorefinery. Chemie Ingenieur Technik. doi:10.1002/cite.202200007
Denisov, N.; Qin, S.; Will, J.; Vasiljevic, B. N.; Skorodumova, N. V.; Pašti, I. A.; Sarma, B. B.; Osuagwu, B.; Yokosawa, T.; Voss, J.; Wirth, J.; Spiecker, E.; Schmuki, P. (2022). Light‐induced agglomeration of single‐atom platinum in photocatalysis. Advanced Materials, 35 (5), Art.-Nr.: 2206569. doi:10.1002/adma.202206569
Fan, Y.; Hoffmann, A.; Hornung, U.; Raffelt, K.; Zevaco, T. A.; Dahmen, N. (2022). Hydrothermal, catalyst-free production of a cyclic dipeptide from lysine. Journal of Analytical and Applied Pyrolysis, 168, Art.-Nr.: 105792. doi:10.1016/j.jaap.2022.105792
Visser, N. L.; Daoura, O.; Plessow, P. N.; Smulders, L. C. J.; Rijk, J. W. de; de Rijk, J. W.; Stewart, J. A.; Vandegehuchte, B. D.; Studt, F.; van der Hoeven, J. E. S. (2022). Particle Size Effects of Carbon Supported Nickel Nanoparticles for High Pressure CO 2 Methanation. ChemCatChem, 14 (22), Art.Nr. e202200665. doi:10.1002/cctc.202200665
Aitbekova, A.; Zhou, C.; Stone, M. L.; Lezama-Pacheco, J. S.; Yang, A.-C.; Hoffman, A. S.; Goodman, E. D.; Huber, P.; Stebbins, J. F.; Bustillo, K. C.; Ercius, P.; Ciston, J.; Bare, S. R.; Pleßow, P. N.; Cargnello, M. (2022). Templated encapsulation of platinum-based catalysts promotes high-temperature stability to 1,100 °C. Nature Materials, 21 (11), 1290–1297. doi:10.1038/s41563-022-01376-1
Borchers, M.; Thrän, D.; Chi, Y.; Dahmen, N.; Dittmeyer, R.; Dolch, T.; Dold, C.; Förster, J.; Herbst, M.; Heß, D.; Kalhori, A.; Koop-Jakobsen, K.; Li, Z.; Mengis, N.; Reusch, T. B. H.; Rhoden, I.; Sachs, T.; Schmidt-Hattenberger, C.; Stevenson, A.; Thoni, T.; Wu, J.; Yeates, C. (2022). Scoping carbon dioxide removal options for Germany–What is their potential contribution to Net-Zero CO?. Frontiers in Climate, 4. doi:10.3389/fclim.2022.810343
Marchuk, V.; Huang, X.; Murzin, V.; Grunwaldt, J.-D.; Doronkin, D. E. (2022). Operando QEXAFS Study of Pt–Fe Ammonia Slip Catalysts During Realistic Driving Cycles. Topics in Catalysis. doi:10.1007/s11244-022-01718-y
Fonseca, F. G.; Anca-Couce, A.; Funke, A.; Dahmen, N. (2022). Challenges in Kinetic Parameter Determination for Wheat Straw Pyrolysis. Energies, 15 (19), Art.-Nr.: 7240. doi:10.3390/en15197240
Betz, M.; Fuchs, C.; Zevaco, T. A.; Arnold, U.; Sauer, J. (2022). Production of hydrocarbon fuels by heterogeneously catalyzed oligomerization of ethylene: Tuning of the product distribution. Biomass and Bioenergy, 166, Art.-Nr.: 106595. doi:10.1016/j.biombioe.2022.106595
Perret, L.; Lacerda de Oliveira Campos, B.; Herrera Delgado, K.; Zevaco, T. A.; Neumann, A.; Sauer, J. (2022). CO Fixation to Elementary Building Blocks: Anaerobic Syngas Fermentation vs. Chemical Catalysis. Chemie Ingenieur Technik, 94 (11), 1667–1687. doi:10.1002/cite.202200153
Tikhonov, D. S.; Scutelnic, V.; Sharapa, D. I.; Krotova, A. A.; Dmitrieva, A. V.; Obenchain, D. A.; Schnell, M. (2022). Structures of the (Imidazole)nH+ . Ar (n=1,2,3) complexes determined from IR spectroscopy and quantum chemical calculations. Structural Chemistry, 34 (1), 203–213. doi:10.1007/s11224-022-02053-4
Schumann, M.; Grunwaldt, J.-D.; Jensen, A. D.; Christensen, J. M. (2022). Investigations of mechanism, surface species and support effects in CO hydrogenation over Rh. Journal of Catalysis, 414, 90–100. doi:10.1016/j.jcat.2022.08.031
Czioska, S.; Ehelebe, K.; Geppert, J.; Escalera-López, D.; Boubnov, A.; Saraçi, E.; Mayerhöfer, B.; Krewer, U.; Cherevko, S.; Grunwaldt, J.-D. (2022). Heating up the OER: Investigation of IrO 2 OER Catalysts as Function of Potential and Temperature**. ChemElectroChem, 9 (19), e202200514. doi:10.1002/celc.202200514
Kreitz, B.; Lott, P.; Bae, J.; Blöndal, K.; Angeli, S.; Ulissi, Z. W.; Studt, F.; Goldsmith, C. F.; Deutschmann, O. (2022). Detailed Microkinetics for the Oxidation of Exhaust Gas Emissions through Automated Mechanism Generation. ACS Catalysis, 12 (18), 11137–11151. doi:10.1021/acscatal.2c03378
Keller, K.; Wan, S.; Borchers, M.; Lott, P.; Suntz, R.; Deutschmann, O.; Wan, S. (2022). Treating NOx emission of hydrogen fueled combustion engines by NOx storage and reduction catalysts: A transient kinetic study including PLIF measurements. Proceedings of the Combustion Institute. doi:10.1016/j.proci.2022.07.027
Popov, I.; Bügel, P.; Kozlowska, M.; Fink, K.; Studt, F.; Sharapa, D. I. (2022). Analytical Model of CVD Growth of Graphene on Cu(111) Surface. Nanomaterials, 12 (17), Art.Nr. 2963. doi:10.3390/nano12172963
Weyhing, T.; Koch, T.; Wagner, U.; Dahmen, N. (2022). G40 - Ein Schritt zu einem CO-neutralen Benzinkraftstoff. MTZ - Motortechnische Zeitschrift, 83 (9), 30–36. doi:10.1007/s35146-022-0852-4
Lacerda de Oliveira Campos, B.; John, K.; Beeskow, P.; Herrera Delgado, K.; Pitter, S.; Dahmen, N.; Sauer, J. (2022). A Detailed Process and Techno-Economic Analysis of Methanol Synthesis from H₂ and CO₂ with Intermediate Condensation Steps. Processes, 10 (8), Art.-Nr.: 1535. doi:10.3390/pr10081535
Barberis, L.; Hakimioun, A. H.; Plessow, P. N.; Visser, N. L.; Stewart, J. A.; Vandegehuchte, B. D.; Studt, F.; de Jongh, P. E. (2022). Competition between reverse water gas shift reaction and methanol synthesis from CO 2 : influence of copper particle size. Nanoscale, 14 (37), 13551–13560. doi:10.1039/d2nr02612k
Das, S.; Pashminehazar, R.; Sharma, S.; Weber, S.; Sheppard, T. L. (2022). New Dimensions in Catalysis Research with Hard X‐Ray Tomography. Chemie Ingenieur Technik, 94 (11), 1591–1610. doi:10.1002/cite.202200082
Treu, P.; Sarma, B. B.; Grunwaldt, J.-D.; Saraçi, E. (2022). Oxidative cleavage of vicinal diols catalyzed by monomeric Fe‐sites inside MFI zeolite. ChemCatChem, 14 (21), e202200993. doi:10.1002/cctc.202200993
De Wispelaere, K.; Plessow, P. N.; Studt, F. (2022). Toward Computing Accurate Free Energies in Heterogeneous Catalysis: a Case Study for Adsorbed Isobutene in H-ZSM-5. ACS Physical Chemistry Au, 2 (5), 399–406. doi:10.1021/acsphyschemau.2c00020
Fan, Y.; Prestigiacomo, C.; Gong, M.; Tietz, T.; Hornung, U.; Dahmen, N. (2022). Comparative investigation on the value-added products obtained from continuous and batch hydrothermal liquefaction of sewage sludge. Frontiers in Environmental Science, 10, Art.Nr. 996353. doi:10.3389/fenvs.2022.996353
Fan, Y.; Hornung, U.; Dahmen, N. (2022). Hydrothermal liquefaction of sewage sludge for biofuel application: A review on fundamentals, current challenges and strategies. Biomass and Bioenergy, 165, Art.-Nr.: 106570. doi:10.1016/j.biombioe.2022.106570
Su, Y.; Guo, B.; Hornung, U.; Dahmen, N. (2022). FeCl₃-supported solvothermal liquefaction of Miscanthus in methanol. Energy, 258, Art.-Nr.: 124971. doi:10.1016/j.energy.2022.124971
Prestigiacomo, C.; Zimmermann, J.; Hornung, U.; Raffelt, K.; Dahmen, N.; Scialdone, O.; Galia, A. (2022). Effect of transition metals and homogeneous hydrogen producers in the hydrothermal liquefaction of sewage sludge. Fuel Processing Technology, 237, Art.-Nr.: 107452. doi:10.1016/j.fuproc.2022.107452
Drexler, M.; Haltenort, P.; Arnold, U.; Sauer, J.; Karakoulia, S. A.; Triantafyllidis, K. S. (2022). Progress in the anhydrous production of oxymethylene ethers (OME) as a renewable diesel fuel in a liquid phase process. Catalysis Today. doi:10.1016/j.cattod.2022.07.015
Geppert, J.; Röse, P.; Czioska, S.; Escalera-López, D.; Boubnov, A.; Saraçi, E.; Cherevko, S.; Grunwaldt, J.-D.; Krewer, U. (2022). Microkinetic Analysis of the Oxygen Evolution Performance at Different Stages of Iridium Oxide Degradation. Journal of the American Chemical Society, 144 (29), 13205–13217. doi:10.1021/jacs.2c03561
Campos Fraga, M. M.; Lacerda de Oliveira Campos, B.; Hendrawidjaja, H.; Carriel Schmitt, C.; Raffelt, K.; Dahmen, N. (2022). Fast Pyrolysis Oil Upgrading via HDO with Fe-Promoted Nb₂O₅-Supported Pd-Based Catalysts. Energies, 15 (13), Art.-Nr.: 4762. doi:10.3390/en15134762
Bagheri, M.; Stumpf, B.; Roisman, I. V.; Dadvand, A.; Wörner, M.; Marschall, H. (2022). A unified finite volume framework for phase‐field simulations of an arbitrary number of fluid phases. The Canadian Journal of Chemical Engineering, 100 (9), 2291–2308. doi:10.1002/cjce.24510
Wan, S.; Keller, K.; Lott, P.; Shirsath, A. B.; Tischer, S.; Häber, T.; Suntz, R.; Deutschmann, O. (2022). Experimental and numerical investigation of NO oxidation on Pt/Al₂ O₃- and NOₓ storage on Pt/BaO/Al₂ O₃-catalysts. Catalysis Science & Technology, 12 (14), 4456–4470. doi:10.1039/d2cy00572g
Qin, S.; Denisov, N.; Sarma, B. B.; Hwang, I.; Doronkin, D. E.; Tomanec, O.; Kment, S.; Schmuki, P. (2022). Pt Single Atoms on TiO 2 Polymorphs—Minimum Loading with a Maximized Photocatalytic Efficiency. Advanced Materials Interfaces, 9 (22), Art.-Nr.: 2200808. doi:10.1002/admi.202200808
Feofanov, M.; Sharapa, D. I.; Akhmetov, V. (2022). Alumina-mediated soft propargylic C–H activation in unactivated alkynes. Green Chemistry, 24 (12), 4761–4765. doi:10.1039/d2gc00555g
Schulte, M.; Weber, S.; Klag, L.; Grunwaldt, J.-D.; Sheppard, T. L. (2022). Synchrotron PXRD deconvolutes nickel particle and support changes in Ni/ZrO methanation catalysts. Catalysis Science & Technology, 12 (20), 6069–6083. doi:10.1039/D2CY00972B
Plessow, P. N.; Enss, A. E.; Huber, P.; Studt, F. (2022). A new mechanistic proposal for the aromatic cycle of the MTO process based on a computational investigation for H-SSZ-13. Catalysis Science and Technology, 12 (11), 3516–3523. doi:10.1039/D2CY00021K
Kohansal, K.; Sharma, K.; Haider, M. S.; Toor, S. S.; Castello, D.; Rosendahl, L. A.; Zimmermann, J.; Pedersen, T. H. (2022). Hydrotreating of bio-crude obtained from hydrothermal liquefaction of biopulp: effects of aqueous phase recirculation on the hydrotreated oil. Sustainable Energy and Fuels, 6 (11), 2805–2822. doi:10.1039/D2SE00399F
Zheng, L.; Casapu, M.; Grunwaldt, J.-D. (2022). Understanding the multiple interactions in vanadium-based SCR catalysts during simultaneous NO and soot abatement. Catalysis Science & Technology, 12 (12), 3969–3981. doi:10.1039/d2cy00432a
Abel, K. L.; Weber, S.; Poppitz, D.; Titus, J.; Sheppard, T. L.; Gläser, R. (2022). Thermally stable mesoporous tetragonal zirconia through surfactant-controlled synthesis and Si-stabilization. RSC Advances, 12 (26), 16875–16885. doi:10.1039/d2ra01459a
Amsler, J.; Bernart, S.; Plessow, P. N.; Studt, F. (2022). Theoretical investigation of the olefin cycle in H-SSZ-13 for the ethanol-to-olefins process using ab initio calculations and kinetic modeling. Catalysis Science and Technology, 12 (10), 3311–3321. doi:10.1039/D1CY02289J
Koutsonikolas, D.; Karagiannakis, G.; Plakas, K.; Chatzis, V.; Skevis, G.; Giudicianni, P.; Amato, D.; Sabia, P.; Boukis, N.; Stoll, K. (2022). Membrane and Electrochemical Based Technologies for the Decontamination of Exploitable Streams Produced by Thermochemical Processing of Contaminated Biomass. Energies, 15 (7), Art. Nr.: 2683. doi:10.3390/en15072683
Karp, S. G.; Schmitt, C. C.; Moreira, R.; de Oliveira Penha, R.; de Mello, A. F. M.; Herrmann, L. W.; Soccol, C. R. (2022). Sugarcane Biorefineries: Status and Perspectives in Bioeconomy. BioEnergy Research, 15, 1842–1853. doi:10.1007/s12155-022-10406-4
Wang, J.; Sauter, E.; Nefedov, A.; Heißler, S.; Maurer, F.; Casapu, M.; Grunwaldt, J.-D.; Wang, Y.; Wöll, C. (2022). Dynamic Structural Evolution of Ceria-Supported Pt Particles: A Thorough Spectroscopic Study. The Journal of Physical Chemistry C, 126 (21), 9051–9058. doi:10.1021/acs.jpcc.2c02420
Akhmetov, V.; Feofanov, M.; Ruppenstein, C.; Lange, J.; Sharapa, D.; Krstić, M.; Hampel, F.; Kataev, E. A.; Amsharov, K. (2022). Acenaphthenoannulation Induced by the Dual Lewis Acidity of Alumina. Chemistry - A European Journal, 28 (31), e202200584. doi:10.1002/chem.202200584
Huber, P.; Studt, F.; Plessow, P. N. (2022). Reactivity of Surface Lewis and Brønsted Acid Sites in Zeolite Catalysis: A Computational Case Study of DME Synthesis Using H-SSZ-13. The Journal of Physical Chemistry C, 126 (13), 5896–5905. doi:10.1021/acs.jpcc.2c00668
Seid, N.; Griesheimer, P.; Neumann, A. (2022). Investigating the Processing Potential of Ethiopian Agricultural Residue Enset/Ensete ventricosum for Biobutanol Production. Bioengineering, 9 (4), Art.-Nr.: 133. doi:10.3390/bioengineering9040133
Plessow, P. N.; Campbell, C. T. (2022). Influence of Adhesion on the Chemical Potential of Supported Nanoparticles as Modeled with Spherical Caps. ACS Catalysis, 12 (4), 2302–2308. doi:10.1021/acscatal.1c04633
Neukum, D.; Baumgarten, L.; Wüst, D.; Sarma, B. B.; Saraçi, E.; Kruse, A.; Grunwaldt, J.-D. (2022). Challenges of green FDCA production from bio‐derived HMF: Overcoming deactivation by concomitant amino acids. ChemSusChem, 15 (13), e202200418. doi:10.1002/cssc.202200418
Sarmah, N.; Sharma, D.; Mehta, B. K.; Shrivastava, B. D.; Das, B. K.; Zimina, A.; Gaur, A. (2022). Probing the electronic nature of Co centers forming the planar ring in octa-nuclear Co complexes using X-ray absorption spectroscopy. Journal of Molecular Structure, 1263, Art.-Nr.: 133125. doi:10.1016/j.molstruc.2022.133125
Grafmüller, J.; Böhm, A.; Zhuang, Y.; Spahr, S.; Müller, P.; Otto, T. N.; Bucheli, T. D.; Leifeld, J.; Giger, R.; Tobler, M.; Schmidt, H.-P.; Dahmen, N.; Hagemann, N. (2022). Wood Ash as an Additive in Biomass Pyrolysis: Effects on Biochar Yield, Properties, and Agricultural Performance. ACS Sustainable Chemistry & Engineering, 10 (8), Artk.Nr.: 2720–2729. doi:10.1021/acssuschemeng.1c07694
Delgado Otalvaro, N.; Bilir, P. G.; Herrera Delgado, K.; Pitter, S.; Sauer, J. (2022). Kinetics of the Direct DME Synthesis: State of the Art and Comprehensive Comparison of Semi-Mechanistic, Data-Based and Hybrid Modeling Approaches. Catalysts, 12 (3), Art.-Nr.: 347. doi:10.3390/catal12030347
Zhao, D.; Guo, K.; Han, S.; Doronkin, D. E.; Lund, H.; Li, J.; Grunwaldt, J.-D.; Zhao, Z.; Xu, C.; Jiang, G.; Kondratenko, E. V. (2022). Controlling Reaction-Induced Loss of Active Sites in ZnOₓ/Silicalite-1 for Durable Nonoxidative Propane Dehydrogenation. ACS Catalysis, 12 (8), 4608–4617. doi:10.1021/acscatal.1c05778
Santos, T. M.; Silva, W. R. da; Carregosa, J. de C.; Schmitt, C. C.; Moreira, R.; Raffelt, K.; Dahmen, N.; Wisniewski, A., Jr. (2022). Thermal Conversion of Sugarcane Bagasse Coupled with Vapor Phase Hydrotreatment over Nickel-Based Catalysts: A Comprehensive Characterization of Upgraded Products. Catalysts, 12 (4), 355. doi:10.3390/catal12040355
Baehr, C.; Smith, G. J.; Sleeman, D.; Zevaco, T. A.; Raffelt, K.; Dahmen, N. (2022). Aldehydes and ketones in pyrolysis oil: analytical determination and their role in the aging process. RSC Advances, 12 (12), 7374–7382. doi:10.1039/D1RA08899H
Sayegh, A.; Merkert, S.; Zimmermann, J.; Horn, H.; Saravia, F. (2022). Treatment of Hydrothermal-Liquefaction Wastewater with Crossflow UF for Oil and Particle Removal. Membranes, 12 (3), Art.-Nr.: 255. doi:10.3390/membranes12030255
Eggart, D.; Huang, X.; Zimina, A.; Yang, J.; Pan, Y.; Pan, X.; Grunwaldt, J.-D. (2022). Operando XAS Study of Pt-Doped CeO2 for the Nonoxidative Conversion of Methane. ACS Catalysis, 12, 3897–3908. doi:10.1021/acscatal.2c00092
Yang, Q.; Kondratenko, V. A.; Petrov, S. A.; Doronkin, D. E.; Saraçi, E.; Lund, H.; Arinchtein, A.; Kraehnert, R.; Skrypnik, A. S.; Matvienko, A. A.; Kondratenko, E. V. (2022). Identifying Performance Descriptors in CO2 Hydrogenation over Iron‐based Catalysts Promoted with Alkali Metals. Angewandte Chemie International Edition, 61 (22), Art.Nr. e202116517. doi:10.1002/anie.202116517
Bagheri, M.; Stumpf, B.; Roisman, I. V.; Tropea, C.; Hussong, J.; Wörner, M.; Marschall, H. (2022). Interfacial relaxation – Crucial for phase-field methods to capture low to high energy drop-film impacts. International Journal of Heat and Fluid Flow, 94, Art.-Nr.: 108943. doi:10.1016/j.ijheatfluidflow.2022.108943
Banivaheb, S.; Pitter, S.; Delgado, K. H.; Rubin, M.; Sauer, J.; Dittmeyer, R. (2022). Recent Progress in Direct DME Synthesis and Potential of Bifunctional Catalysts. Chemie - Ingenieur - Technik, 94 (3), 240–255. doi:10.1002/cite.202100167
Weber, S.; Zimmermann, R. T.; Bremer, J.; Abel, K. L.; Poppitz, D.; Prinz, N.; Ilsemann, J.; Wendholt, S.; Yang, Q.; Pashminehazar, R.; Monaco, F.; Cloetens, P.; Huang, X.; Kübel, C.; Kondratenko, E.; Bauer, M.; Bäumer, M.; Zobel, M.; Gläser, R.; Sundmacher, K.; Sheppard, T. L. (2022). Digitization in Catalysis Research: Towards a Holistic Description of a Ni/Al2O3 Reference Catalyst for CO2 Methanation. ChemCatChem, 14 (8), e202101878. doi:10.1002/cctc.202101878
Maurer, F.; Beck, A.; Jelic, J.; Wang, W.; Mangold, S.; Stehle, M.; Wang, D.; Dolcet, P.; Gänzler, A. M.; Kübel, C.; Studt, F.; Casapu, M.; Grunwaldt, J.-D. (2022). Surface Noble Metal Concentration on Ceria as a Key Descriptor for Efficient Catalytic CO Oxidation. ACS catalysis, 12, 2473–2486. doi:10.1021/acscatal.1c04565
Drexler, M.; Haltenort, P.; Arnold, U.; Sauer, J. (2022). Continuous Synthesis of Oxymethylene Ether Fuels from Dimethyl Ether in a Heterogeneously Catalyzed Liquid Phase Process. Chemie-Ingenieur-Technik, 94 (3), 256–266. doi:10.1002/cite.202100173
Wang, S.; Rohlfs, P.; Börnhorst, M.; Schillaci, A.; Marschall, H.; Deutschmann, O.; Wörner, M. (2022). Bubble Cutting by Cylinder – Elimination of Wettability Effects by a Separating Liquid Film. Chemie-Ingenieur-Technik, 94 (3), 385–392. doi:10.1002/cite.202100145
Krstić, M.; Fink, K.; Sharapa, D. I. (2022). The Adsorption of Small Molecules on the Copper Paddle-Wheel: Influence of the Multi-Reference Ground State. Molecules, 27 (3), Art.-Nr.: 912. doi:10.3390/molecules27030912
Chawla, J.; Schardt, S.; Angeli, S.; Lott, P.; Tischer, S.; Maier, L.; Deutschmann, O. (2022). Oxidative Coupling of Methane over Pt/AlO at High Temperature: Multiscale Modeling of the Catalytic Monolith. Catalysts, 12 (2), Art.-Nr.: 189. doi:10.3390/catal12020189
Guse, D.; Polierer, S.; Wild, S.; Pitter, S.; Kind, M. (2022). Improved Preparation of Cu/Zn‐Based Catalysts by Well‐Defined Conditions of Co‐Precipitation and Aging. Chemie - Ingenieur - Technik, 94 (3), 314–327. doi:10.1002/cite.202100197
Uzunidis, G.; Behrens, S. (2022). Pd/Ag Nanoparticles Prepared in Ionic Liquids as Model Catalysts for the Hydrogenation of Diphenylacetylene . Chemie - Ingenieur - Technik, 94 (3), 328–339. doi:10.1002/cite.202100163
Wild, S.; Lacerda de Oliveira Campos, B.; Zevaco, T. A.; Guse, D.; Kind, M.; Pitter, S.; Herrera Delgado, K.; Sauer, J. (2022). Experimental investigations and model-based optimization of CZZ/H-FER 20 bed compositions for the direct synthesis of DME from CO-rich syngas. Reaction chemistry & engineering, 7 (4), 943–956. doi:10.1039/d1re00470k
Kirchberger, F. M.; Liu, Y.; Plessow, P. N.; Tonigold, M.; Studt, F.; Sanchez-Sanchez, M.; Lercher, J. A. (2022). Mechanistic differences between methanol and dimethyl ether in zeolite-catalyzed hydrocarbon synthesis. Proceedings of the National Academy of Sciences of the United States of America, 119 (4), Art.-Nr. e2103840119. doi:10.1073/pnas.2103840119
Weber, S.; Diaz, A.; Holler, M.; Schropp, A.; Lyubomirskiy, M.; Abel, K. L.; Kahnt, M.; Jeromin, A.; Kulkarni, S.; Keller, T. F.; Gläser, R.; Sheppard, T. L. (2022). Evolution of Hierarchically Porous Nickel Alumina Catalysts Studied by X‐Ray Ptychography. Advanced science, 9 (8), 2105432. doi:10.1002/advs.202105432
Guo, B.; Yang, B.; Weil, P.; Zhang, S.; Hornung, U.; Dahmen, N. (2022). The Effect of Dichloromethane on Product Separation during Continuous Hydrothermal Liquefaction of Chlorella vulgaris and Aqueous Product Recycling for Algae Cultivation. Energy & fuels, 36 (2), 922–931. doi:10.1021/acs.energyfuels.1c02523
Gaur, A.; Stehle, M.; Serrer, M.-A.; Stummann, M. Z.; La Fontaine, C.; Briois, V.; Grunwaldt, J.-D.; Høj, M. (2022). Using Transient XAS to Detect Minute Levels of Reversible S-O Exchange at the Active Sites of MoS2-Based Hydrotreating Catalysts: Effect of Metal Loading, Promotion, Temperature, and Oxygenate Reactant. ACS catalysis, 12 (1), 633–647. doi:10.1021/acscatal.1c04767
Trinkies, L. L.; Düll, A.; Zhang, J.; Urban, S.; Deschner, B. J.; Kraut, M.; Ladewig, B. P.; Weltin, A.; Kieninger, J.; Dittmeyer, R. (2022). Investigation of mass transport processes in a microstructured membrane reactor for the direct synthesis of hydrogen peroxide. Chemical engineering science, 248, Ar. Nr.: 117145. doi:10.1016/j.ces.2021.117145
Guo, B.; Yang, B.; Su, Y.; Zhang, S.; Hornung, U.; Dahmen, N. (2022). Screening and Optimization of Microalgae Biomass and Plastic Material Coprocessing by Hydrothermal Liquefaction. ACS ES&T Engineering, 2 (1), 65–77. doi:10.1021/acsestengg.1c00261
Tofighi, G.; Lichtenberg, H.; Gaur, A.; Wang, W.; Wild, S.; Herrera Delgado, K.; Pitter, S.; Dittmeyer, R.; Grunwaldt, J.-D.; Doronkin, D. E. (2022). Continuous Synthesis of Cu/ZnO/Al2O3 Nanoparticles in a Co-precipitation Reaction Using a Silicon Based Microfluidic Reactor. Reaction chemistry & engineering, 7 (3), 730–740. doi:10.1039/D1RE00499A
Mantei, F.; Ali, R. E.; Baensch, C.; Voelker, S.; Haltenort, P.; Burger, J.; Dietrich, R.-U.; Assen, N. von der; Schaadt, A.; Sauer, J.; Salem, O. (2022). Techno-economic assessment and Carbon footprint of processes for the large-scale production of Oxymethylene Dimethyl Ethers from Carbon Dioxide and Hydrogen. Sustainable energy & fuels, 6 (3), 528–549. doi:10.1039/D1SE01270C
Pandit, L.; Serrer, M.-A.; Saraҫi E.; Boubnov, A.; Grunwaldt, J.-D. (2022). Versatile in situ/operando Setup for Studying Catalysts by X-Ray Absorption Spectroscopy under Demanding and Dynamic Reaction Conditions for Energy Storage and Conversion. Chemistry methods, 2 (1), e202100078. doi:10.1002/cmtd.202100078
Liu, S.; Yang, C.; Zha, S.; Sharapa, D.; Studt, F.; Zhao, Z.-J.; Gong, J. (2022). Moderate Surface Segregation Promotes Selective Ethanol Production in CO Hydrogenation Reaction over CoCu Catalysts. Angewandte Chemie - International Edition, 61 (2), e202109027. doi:10.1002/anie.202109027
Li, H.; Jelic, J.; Studt, F. (2022). The barrier free splitting of O-H bond in HO and CHOH due to the synergetic effects of single atom (Cu/Fe) coordination change and ZnO(1 1 0) surface oxygen activation. Applied Surface Science, 576, Art.Nr. 151750. doi:10.1016/j.apsusc.2021.151750
Yu, S.; Guo, B.; Johnsen, S.; Wiegand, G.; Lemmer, U.; Guo, X.; Zhang, M.; Li, Y.; Sprau, C.; Hölscher, H.; Colsmann, A.; Gomard, G. (2022). Nanoporous Polymer Reflectors for Organic Solar Cells. Energy technology, 10 (2), Art.-Nr. 2100676. doi:10.1002/ente.202100676
Stehle, M.; Gaur, A.; Weber, S.; Sheppard, T. L.; Thomann, M.; Fischer, A.; Grunwaldt, J.-D. (2022). Complementary operando insights into the activation of multicomponent selective propylene oxidation catalysts. Journal of catalysis, 408, 339–355. doi:10.1016/j.jcat.2021.08.053
Ma, M.; Huang, Z.; Doronkin, D. E.; Fa, W.; Rao, Z.; Zou, Y.; Wang, R.; Zhong, Y.; Cao, Y.; Zhang, R.; Zhou, Y. (2022). Ultrahigh surface density of Co-N₂C single-atom-sites for boosting photocatalytic CO₂ reduction to methanol. Applied catalysis / B, 300, Art.-Nr.: 120695. doi:10.1016/j.apcatb.2021.120695
Wollak, B.; Doronkin, D. E.; Espinoza, D.; Sheppard, T.; Korup, O.; Schmidt, M.; Alizadefanaloo, S.; Rosowski, F.; Schroer, C.; Grunwaldt, J.-D.; Horn, R. (2022). Exploring Catalyst Dynamics in a Fixed Bed Reactor by Correlative Operando Spatially-Resolved Structure-Activity Profiling. Journal of catalysis, 408, 372–387. doi:10.1016/j.jcat.2021.08.029
Soares Dias, A. P.; Gomes Fonseca, F.; Catarino, M.; Gomes, J. (2022). Biodiesel Glycerin Valorization into Oxygenated Fuel Additives. Catalysis Letters, 152, 513–522. doi:10.1007/s10562-021-03646-0
Mrosk, C.; Kolb, T.; Stapf, D.; Sauer, J. (2022). CarbonCycleLab: Wasserstoff für die Circular Economy = CarbonCycleLab: Hydrogen for the Circular Economy. LookIT. LookKIT : Das Magazin für Forschung, Lehre, Innovation, (01/2022), 38–41.
2021
Book Chapters
Semmel, M.; Ali, R. E.; Ouda, M.; Schaadt, A.; Sauer, J.; Hebling, C. (2021). Power-to-DME: a cornerstone towards a sustainable energy system. Power to Fuel., 123–151, Elsevier. doi:10.1016/B978-0-12-822813-5.00010-2
Dolcet, P.; Maurer, F.; Casapu, M.; Grunwaldt, J.-D. (2021). Tracking the evolution of Pt single sites on CeO2. ESRF Highlights 2020, 123–125.
Journal Articles
Yang, C.; Cao, Y.; Plessow, P. N.; Wang, J.; Nefedov, A.; Heissler, S.; Studt, F.; Wang, Y.; Idriss, H.; Mayerhöfer, T. G.; Wöll, C. (2021). NO Adsorption and Photochemistry on Ceria Surfaces. Journal of Physical Chemistry C, 126 (4), 2253–2263. doi:10.1021/acs.jpcc.1c10181
Sarma, B. B.; Agostini, G.; Farpón, M. G.; Marini, C.; Pfänder, N.; Prieto, G. (2021). Bottom-up assembly of bimetallic nanocluster catalysts from oxide-supported single-atom precursors. Journal of materials chemistry / A, 9 (13), 8401–8415. doi:10.1039/d1ta00421b
Kim, Y. Y.; Keller, T. F.; Goncalves, T. J.; Abuin, M.; Runge, H.; Gelisio, L.; Carnis, J.; Vonk, V.; Plessow, P. N.; Vartaniants, I. A.; Stierle, A. (2021). Single alloy nanoparticle x-ray imaging during a catalytic reaction. Science advances, 7 (40), Art.Nr.: eabh0757. doi:10.1126/sciadv.abh0757
Lacerda de Oliveira Campos, B.; Herrera Delgado, K.; Pitter, S.; Sauer, J. (2021). Development of Consistent Kinetic Models Derived from a Microkinetic Model of the Methanol Synthesis. Industrial & engineering chemistry research, 60 (42), 15074–15086. doi:10.1021/acs.iecr.1c02952
Wang, X.; Funke, A.; Cheng, Y.-J.; Song, F.; Yin, S.; Liang, S.; Zuo, X.; Gao, J.; Müller-Buschbaum, P.; Xia, Y. (2021). Continuous fast pyrolysis synthesis of TiO₂/C nanohybrid lithium-ion battery anode. Nano select, 2 (9), 1770–1778. doi:10.1002/nano.202100015
Schmitt, C. C.; Fonseca, F. G.; Fraga, M. M. C.; Wisniewski, J., Alberto; Karp, S.; José, Á. H. M.; Rodrigues, R. C. L. B. L.; Moreira, R.; Hirayama, D. E.; Raffelt, K.; Dahmen, N. (2021). Thermochemical and catalytic conversion technologies for the development of Brazilian biomass utilization. Catalysts, 11 (12), 1549. doi:10.3390/catal11121549
Freund, H.; Sauer, J.; Wachsen, O. (2021). „Circular Economy” – ein neues und zugleich altes Arbeitsgebiet der Reaktionstechnik. Chemie - Ingenieur - Technik, 93 (5), 735. doi:10.1002/cite.202170502
Samkhaniani, N.; Marschall, H.; Stroh, A.; Frohnapfel, B.; Wörner, M. (2021). Numerical simulation of drop impingement and bouncing on a heated hydrophobic surface. Journal of Physics: Conference Series, 2116 (1), Art.-Nr.: 012073. doi:10.1088/1742-6596/2116/1/012073
Lacková, V.; Schroer, M. A.; Honecker, D.; Hähsler, M.; Vargová, H.; Zakutanská, K.; Behrens, S.; Kováč, J.; Svergun, D. I.; Kopčanský, P.; Tomašovičová, N. (2021). Clustering in ferronematics : The effect of magnetic collective ordering. iScience, 24 (12), Article no: 103493. doi:10.1016/j.isci.2021.103493
Deschner, B. J.; Doronkin, D. E.; Sheppard, T. L.; Rabsch, G.; Grunwaldt, J.-D.; Dittmeyer, R. (2021). Continuous-flow reactor setup for X-ray absorption spectroscopy of high pressure heterogeneous liquid–solid catalytic processes. Review of scientific instruments, 92 (12), Article no: 124101. doi:10.1063/5.0057011
Akhmetov, V.; Feofanov, M.; Sharapa, D. I.; Amsharov, K. (2021). Alumina-Mediated π-Activation of Alkynes. Journal of the American Chemical Society, 143 (37), 15420–15426. doi:10.1021/jacs.1c07845
Zhao, D.; Tian, X.; Doronkin, D. E.; Han, S.; Kondratenko, V. A.; Grunwaldt, J.-D.; Perechodjuk, A.; Vuong, T. H.; Rabeah, J.; Eckelt, R.; Rodemerck, U.; Linke, D.; Jiang, G.; Jiao, H.; Kondratenko, E. V. (2021). In situ formation of ZnOₓ species for efficient propane dehydrogenation. Nature <London>, 599, 234–238. doi:10.1038/s41586-021-03923-3
Straß-Eifert, A.; Sheppard, T. L.; Becker, H.; Friedland, J.; Zimina, A.; Grunwaldt, J.-D.; Güttel, R. (2021). Cobalt-based Nanoreactors in Combined Fischer-Tropsch Synthesis and Hydroprocessing: Effects on Methane and CO Selectivity. ChemCatChem, 13 (24), 5216–5227. doi:10.1002/cctc.202101053
Weber, S.; Batey, D.; Cipiccia, S.; Stehle, M.; Abel, K. L.; Gläser, R.; Sheppard, T. L. (2021). Harte Röntgen‐Nanotomographie zur 3D‐Analyse der Verkokung in Nickel‐basierten Katalysatoren. Angewandte Chemie, 133 (40), 21940–21945. doi:10.1002/ange.202106380
Smith, A. T.; Plessow, P. N.; Studt, F. (2021). Effect of Aluminum Siting in H-ZSM-5 on Reaction Barriers. Journal of Physical Chemistry C, 125 (37), 20373–20379. doi:10.1021/acs.jpcc.1c06670
Erdogan, S.; Schulenberg, T.; Deutschmann, O.; Wörner, M. (2021). Evaluation of models for bubble-induced turbulence by DNS and utilization in two-fluid model computations of an industrial pilot-scale bubble column. Chemical Engineering Research and Design, 175, 283–295. doi:10.1016/j.cherd.2021.09.012
Jung, D.; Duman, G.; Zimmermann, M.; Kruse, A.; Yanik, J. (2021). Hydrothermal carbonization of fructose—effect of salts and reactor stirring on the growth and formation of carbon spheres. Biomass Conversion and Biorefinery. doi:10.1007/s13399-021-01782-6
Fonseca, F. G.; Soares Dias, A. P. (2021). Almond shells: Catalytic fixed-bed pyrolysis and volatilization kinetics. Renewable Energy, 180, 1380–1390. doi:10.1016/j.renene.2021.08.104
Delgado Otalvaro, N.; Sogne, G.; Herrera Delgado, K.; Wild, S.; Pitter, S.; Sauer, J. (2021). Kinetics of the direct DME synthesis from CO rich syngas under variation of the CZA-to-γ-AlO ratio of a mixed catalyst bed. RSC Advances, 11 (40), 24556–24569. doi:10.1039/d1ra03452a
Smith, A. T.; Plessow, P. N.; Studt, F. (2021). Trends in the Reactivity of Proximate Aluminum Sites in H-SSZ-13. Journal of Physical Chemistry C, 125 (30), 16508–16515. doi:10.1021/acs.jpcc.1c03509
Warmuth, L.; Nails, G.; Casapu, M.; Wang, S.; Behrens, S.; Grunwaldt, J.-D.; Feldmann, C. (2021). Catalytic co oxidation and HO direct synthesis over pd and pt-impregnated titania nanotubes. Catalysts, 11 (8), 949. doi:10.3390/catal11080949
Kohansal, K.; Sharma, K.; Toor, S. S.; Sanchez, E. L.; Zimmermann, J.; Aistrup Rosendahl, L.; Pedersen, T. H. (2021). Bio-Crude Production Improvement during Hydrothermal Liquefaction of Biopulp by Simultaneous Application of Alkali Catalysts and Aqueous Phase Recirculation. Energies, 14 (15), Art.-Nr.: 4492. doi:10.3390/en14154492
Doronkin, D. E.; Casapu, M. (2021). Present Challenges in Catalytic Emission Control for Internal Combustion Engines. Catalysts, 11 (9), Art.-Nr. 1019. doi:10.3390/catal11091019
Lacerda de Oliveira Campos, B.; Herrera Delgado, K.; Wild, S.; Studt, F.; Pitter, S.; Sauer, J. (2021). Correction: Surface reaction kinetics of the methanol synthesis and the water gas shift reaction on Cu/ZnO/AlO. Reaction chemistry & engineering, 6 (8), 1483–1486. doi:10.1039/d1re90031e
Drexler, M.; Haltenort, P.; Zevaco, T. A.; Arnold, U.; Sauer, J. (2021). Synthesis of tailored oxymethylene ether (OME) fuels via transacetalization reactions. Sustainable energy & fuels, 5 (17), 4311–4326. doi:10.1039/d1se00631b
Alizadehfanaloo, S.; Garrevoet, J.; Seyrich, M.; Murzin, V.; Becher, J.; Doronkin, D. E.; Sheppard, T. L.; Grunwaldt, J.-D.; Schroer, C. G.; Schropp, A. (2021). Tracking dynamic structural changes in catalysis by rapid 2D-XANES microscopy. Journal of synchrotron radiation, 28 (5). doi:10.1107/S1600577521007074
Uzunidis, G.; Schade, O.; Schild, D.; Grunwaldt, J.-D.; Behrens, S. (2021). Design of bimetallic Au/Cu nanoparticles in ionic liquids: Synthesis and catalytic properties in 5‐(hydroxymethyl)furfural oxidation. ChemNanoMat, 7 (10), 1108–1116. doi:10.1002/cnma.202100258
Czioska, S.; Boubnov, A.; Escalera-López, D.; Geppert, J.; Zagalskaya, A.; Röse, P.; Saraçi, E.; Alexandrov, V.; Krewer, U.; Cherevko, S.; Grunwaldt, J.-D. (2021). Increased Ir–Ir Interaction in Iridium Oxide during the Oxygen Evolution Reaction at High Potentials Probed by Operando Spectroscopy. ACS catalysis, 11 (15), 10043–10057. doi:10.1021/acscatal.1c02074
Niebel, A.; Funke, A.; Pfitzer, C.; Dahmen, N.; Weih, N.; Richter, D.; Zimmerlin, B. (2021). Fast Pyrolysis of Wheat Straw - Improvements of Operational Stability in 10 Years of Bioliq Pilot Plant Operation. Energy and Fuels, 35 (14), 11333–11345. doi:10.1021/acs.energyfuels.1c00851
Weber, S.; Batey, D.; Cipiccia, S.; Stehle, M.; Abel, K. L.; Gläser, R.; Sheppard, T. L. (2021). Hard X‐ray Nanotomography for 3D Analysis of Coking in Nickel‐based Catalysts. Angewandte Chemie / International edition, 60 (40), 21772–21777. doi:10.1002/anie.202106380
Samkhaniani, N.; Stroh, A.; Holzinger, M.; Marschall, H.; Frohnapfel, B.; Wörner, M. (2021). Bouncing drop impingement on heated hydrophobic surfaces. International journal of heat and mass transfer, 180, Art.-Nr.: 121777. doi:10.1016/j.ijheatmasstransfer.2021.121777
Gossler, S.; Ruwe, L.; Yuan, W.; Yang, J.; Chen, X.; Schmitt, S.; Maier, L.; Kohse-Höinghaus, K.; Qi, F.; Deutschmann, O. (2021). Exploring the interaction kinetics of butene isomers and NO at low temperatures and diluted conditions. Combustion and Flame, 233, Art.-Nr.: 111557. doi:10.1016/j.combustflame.2021.111557
Dahmen, N.; Deiters, U. K.; Tuma, D. (2021). Professor Dr. rer. nat. Gerhard Manfred Schneider (May 7, 1932 – October 16, 2020): Professor and Chair of Physical Chemistry, Ruhr-University, Bochum, Germany (1969-1997). The journal of supercritical fluids, 174, Art.-Nr.: 105219. doi:10.1016/j.supflu.2021.105219
Woo, M.; Tischer, S.; Deutschmann, O.; Wörner, M. (2021). Corrigendum to “A step toward the numerical simulation of catalytic hydrogenation of nitrobenzene in Taylor flow at practical conditions” [Chem. Eng. Sci. 230 (2021) 116132]. Chemical engineering science, 234, Art.-Nr.: 116479. doi:10.1016/j.ces.2021.116479
Raupp, Y. S.; Löser, P. S.; Behrens, S.; Meier, M. A. R. (2021). Selective Catalytic Epoxide Ring-Opening of Limonene Dioxide with Water. ACS sustainable chemistry & engineering, 9 (23), 7713–7718. doi:10.1021/acssuschemeng.1c01788
Goncalves, T. J.; Plessow, P. N.; Studt, F. (2021). Theoretical Study on the NO Selective Catalytic Reduction on Single-Cu Sites and Brønsted Acid Sites in Cu-SSZ-13. The journal of physical chemistry <Washington, DC> / C, 125 (23), 12594–12602. doi:10.1021/acs.jpcc.1c01066
Schäfer, B.; Toro Chacón, F. A.; Brinkmann, T.; Drews, A.; Jochem, E.; Sauer, J. (2021). Bewertung von Energieeffizienztechnologien mit der Methodik EDUAR&D an zwei Beispielen. Chemie - Ingenieur - Technik, 93 (8), 1247–1256. doi:10.1002/cite.202000251
Henrich, E.; Dahmen, N.; Pitter, S.; Sauer, J. (2021). 30 Jahre Institut für Heiße Chemie im Kernforschungszentrum Karlsruhe [30 Years Institute for Hot Chemistry at the Nuclear Research Center Karlsruhe]. Chemie - Ingenieur - Technik, 93 (11), 1667–1687. doi:10.1002/cite.202100064
Bartenbach, D.; Wenzel, O.; Popescu, R.; Faden, L.-P.; Reiß, A.; Kaiser, M.; Zimina, A.; Grunwaldt, J.-D.; Gerthsen, D.; Feldmann, C. (2021). Liquid‐Phase Synthesis of Highly Reactive Rare‐Earth Metal Nanoparticles. Angewandte Chemie / International edition, 60 (32), 17373–17377. doi:10.1002/anie.202104955
Escalera-López, D.; Czioska, S.; Geppert, J.; Boubnov, A.; Röse, P.; Saraçi, E.; Krewer, U.; Grunwaldt, J.-D.; Cherevko, S. (2021). Phase- and Surface Composition-Dependent Electrochemical Stability of Ir-Ru Nanoparticles during Oxygen Evolution Reaction. ACS catalysis, 11 (15), 9300–9316. doi:10.1021/acscatal.1c01682
Pandit, L.; Boubnov, A.; Behrendt, G.; Mockenhaupt, B.; Chowdhury, C.; Jelic, J.; Hansen, A.-L.; Saraci, E.; Ras, E.-J.; Behrens, M.; Studt, F.; Grunwaldt, J.-D. (2021). Unravelling the Zn‐Cu Interaction during Activation of a Zn‐promoted Cu/MgO Model Methanol Catalyst. ChemCatChem, 13 (19), 4120–4132. doi:10.1002/cctc.202100692
Obeid, F.; Van, T. C.; Guo, B.; Surawski, N. C.; Hornung, U.; Brown, R. J.; Ramirez, J. A.; Thomas-Hall, S. R.; Stephens, E.; Hankamer, B.; Rainey, T. (2021). The fate of nitrogen and sulphur during co-liquefaction of algae and bagasse: Experimental and multi-criterion decision analysis. Biomass and bioenergy, 151, Art.Nr. 106119. doi:10.1016/j.biombioe.2021.106119
Mazzanti, S.; Cao, S.; ten Brummelhuis, K.; Völkel, A.; Khamrai, J.; Sharapa, D. I.; Youk, S.; Heil, T.; Tarakina, N. V.; Strauss, V.; Ghosh, I.; König, B.; Oschatz, M.; Antonietti, M.; Savateev, A. (2021). All-organic Z-scheme photoreduction of CO with water as the donor of electrons and protons. Applied catalysis / B, 285, Art. Nr.: 119773. doi:10.1016/j.apcatb.2020.119773
Hakimioun, A. H.; Dietze, E. M.; Vandegehuchte, B. D.; Curulla-Ferre, D.; Joos, L.; Plessow, P. N.; Studt, F. (2021). Theoretical Investigation of the Size Effect on the Oxygen Adsorption Energy of Coinage Metal Nanoparticles. Catalysis letters, 151, 3165–3169. doi:10.1007/s10562-021-03567-y
Fečík, M.; Plessow, P. N.; Studt, F. (2021). Theoretical investigation of the side-chain mechanism of the MTO process over H-SSZ-13 using DFT and calculations. Catalysis science & technology, 11 (11), 3826–3833. doi:10.1039/d1cy00433f
Gaur, A.; Sharma, D.; Nitin Nair, N.; Mehta, B. K.; Shrivastava, B. D.; Gogoi, M.; Sarmah, N.; Das, B. K. (2021). Investigating cubane formation and effect of co-crystallization agents in oxo-bridged Co complexes using X-ray absorption spectroscopy. Journal of molecular structure, 1244, Art.-Nr.: 130869. doi:10.1016/j.molstruc.2021.130869
Stehle, M.; Sheppard, T. L.; Thomann, M.; Fischer, A.; Besser, H.; Pfleging, W.; Grunwaldt, J.-D. (2021). Spatial activity profiling along a fixed bed of powder catalyst during selective oxidation of propylene to acrolein. Catalysis science & technology, 11, 5781–5790. doi:10.1039/D1CY00553G
Cattaneo, S.; Capelli, S.; Stucchi, M.; Bossola, F.; Dal Santo, V.; Araujo-Lopez, E.; Sharapa, D. I.; Studt, F.; Villa, A.; Chieregato, A.; Vandegehuchte, B. D.; Prati, L. (2021). Discovering the role of substrate in aldehyde hydrogenation. Journal of Catalysis, 399, 162–169. doi:10.1016/j.jcat.2021.05.012
Hähsler, M.; Nádasi, H.; Feneberg, M.; Marino, S.; Giesselmann, F.; Behrens, S.; Eremin, A. (2021). Magnetic Tilting in Nematic Liquid Crystals Driven by Self‐Assembly. Advanced functional materials, 31 (31), Art.Nr. 2101847. doi:10.1002/adfm.202101847
Dolcet, P.; Maurer, F.; Casapu, M.; Grunwaldt, J.-D. (2021). Insights into the Structural Dynamics of Pt/CeO Single-Site Catalysts during CO Oxidation. Catalysts, 11 (5), Art.-Nr. 617. doi:10.3390/catal11050617
Schumann, M.; Nielsen, M. R.; Smitshuysen, T. E. L.; Hansen, T. W.; Damsgaard, C. D.; Yang, A.-C. A.; Cargnello, M.; Grunwaldt, J.-D.; Jensen, A. D.; Christensen, J. M. (2021). Rationalizing an Unexpected Structure Sensitivity in Heterogeneous Catalysis - CO Hydrogenation over Rh as a Case Study. ACS Catalysis, 11 (9), 5189–5201. doi:10.1021/acscatal.0c05002
Hoeven, J. E. S. van der; Jelic, J.; Olthof, L. A.; Totarella, G.; Dijk-Moes, R. J. A. van; Krafft, J.-M.; Louis, C.; Studt, F.; Blaaderen, A. van; Jongh, P. E. de. (2021). Unlocking synergy in bimetallic catalysts by core–shell design. Nature Materials, 20, 1216–1220. doi:10.1038/s41563-021-00996-3
Dadvand, A.; Bagheri, M.; Samkhaniani, N.; Marschall, H.; Wörner, M. (2021). Advected phase-field method for bounded solution of the Cahn–Hilliard Navier–Stokes equations. Physics of fluids, 33 (5), Art.-Nr.: 053311. doi:10.1063/5.0048614
Serrer, M.-A.; Stehle, M.; Schulte, M. L.; Besser, H.; Pfleging, W.; Saraci, E.; Grunwaldt, J.-D. (2021). Spatially‐resolved insights into local activity and structure of Ni‐based CO₂ methanation catalysts in fixed‐bed reactors. ChemCatChem, 13 (13), 3010–3020. doi:10.1002/cctc.202100490
Dahmen, N.; Sauer, J. (2021). Evaluation of techno‐economic studies on the bioliq® process for synthetic fuels production from biomass. Processes, 9 (4), Art.-Nr.: 684. doi:10.3390/pr9040684
Cao, Z.; Hülsemann, B.; Wüst, D.; Oechsner, H.; Lautenbach, A.; Kruse, A. (2021). Effect of residence time during hydrothermal carbonization of biogas digestate on the combustion characteristics of hydrochar and the biogas production of process water. Bioresource Technology, 333, Art.-Nr.: 125110. doi:10.1016/j.biortech.2021.125110
Kapuśniak, Ł.; Plessow, P. N.; Trzybiński, D.; Woźniak, K.; Hofmann, P.; Jolly, P. I. (2021). A mild one-pot reduction of phosphine(V) oxides affording phosphines(III) and their metal catalysts. Organometallics, 40, 693–701. doi:10.1021/acs.organomet.0c00788
Fečík, M.; Plessow, P. N.; Studt, F. (2021). Influence of Confinement on Barriers for Alkoxide Formation in Acidic Zeolites. ChemCatChem, 13 (10), 2451–2458. doi:10.1002/cctc.202100009
Taghipour, A.; Hornung, U.; Ramirez, J. A.; Brown, R. J.; Rainey, T. J. (2021). Fractional distillation of algae based hydrothermal liquefaction biocrude for co-processing: changes in the properties, storage stability, and miscibility with diesel. Energy Conversion and Management, 236, Art.Nr.: 114005. doi:10.1016/j.enconman.2021.114005
Amsler, J.; Plessow, P. N.; Studt, F.; Bučko, T. (2021). Anharmonic Correction to Adsorption Free Energy from DFT-Based MD Using Thermodynamic Integration. Journal of chemical theory and computation, 17 (2), 1155–1169. doi:10.1021/acs.jctc.0c01022
Studt, F. (2021). Catalysis by unusual vacancies. Nature Catalysis, 4 (3), 184–185. doi:10.1038/s41929-021-00593-2
Zimmermann, J.; Raffelt, K.; Dahmen, N. (2021). Sequential hydrothermal processing of sewage sludge to produce low nitrogen biocrude. Processes, 9 (3), Art.-Nr.: 491. doi:10.3390/pr9030491
Becher, J.; Weber, S.; Ferreira Sanchez, D.; Doronkin, D. E.; Garrevoet, J.; Falkenberg, G.; Motta Meira, D.; Pascarelli, S.; Grunwaldt, J.-D.; Sheppard, T. L. (2021). Sample Environment for Operando Hard X-ray Tomography—An Enabling Technology for Multimodal Characterization in Heterogeneous Catalysis. Catalysts, 11 (4), Art.-Nr.: 459. doi:10.3390/catal11040459
Boukis, N.; Stoll, I. K. (2021). Gasification of biomass in supercritical water, challenges for the process design—lessons learned from the operation experience of the first dedicated pilot plant. Processes, 9 (3), 1–17. doi:10.3390/pr9030455
Paul, S.; Barman, D.; Chowdhury, C.; Giri, P. K.; De, S. K. (2021). 3D/2D BiS/SnS heterostructures: superior charge separation and enhanced solar light-driven photocatalytic performance. CrystEngComm, 23 (11), 2276–2288. doi:10.1039/d0ce01710h
Lacerda de Oliveira Campos, B.; Herrera Delgado, K.; Wild, S.; Studt, F.; Pitter, S.; Sauer, J. (2021). Surface reaction kinetics of the methanol synthesis and the water gas shift reaction on Cu/ZnO/Al₂O₃. Reaction chemistry & engineering, 6 (5), 868–887. doi:10.1039/D1RE00040C
Delgado Otalvaro, N.; Gül Bilir, P.; Herrera Delgado, K.; Pitter, S.; Sauer, J. (2021). Modeling the Direct Synthesis of Dimethyl Ether using Artificial Neural Networks. Chemie - Ingenieur - Technik, 93 (5), 754–761. doi:10.1002/cite.202000226
Egeberg, A.; Faden, L.-P.; Zimina, A.; Grunwaldt, J.-D.; Gerthsen, D.; Feldmann, C. (2021). Liquid-phase Synthesis of Highly Oxophilic Zerovalent Niobium and Tantalum Nanoparticles. Chemical communications, 57, 3648–3651. doi:10.1039/D1CC00681A
Cao, Y.; Guo, L.; Dan, M.; Doronkin, D. E.; Han, C.; Rao, Z.; Liu, Y.; Meng, J.; Huang, Z.; Zheng, K.; Chen, P.; Dong, F.; Zhou, Y. (2021). Modulating electron density of vacancy site by single Au atom for effective CO photoreduction. Nature Communications, 12 (1), Art.-Nr.: 1675. doi:10.1038/s41467-021-21925-7
Liebertseder, M.; Wang, D.; Cavusoglu, G.; Casapu, M.; Wang, S.; Behrens, S.; Kübel, C.; Grunwaldt, J.-D.; Feldmann, C. (2021). NaCl-template-based synthesis of TiO₂-Pd/Pt hollow nanospheres for H₂O₂ direct synthesis and CO oxidation. Nanoscale, 13 (3), 2005–2011. doi:10.1039/d0nr08871d
Dietrich, C.; Chen, S.; Uzunidis, G.; Hähsler, M.; Träutlein, Y.; Behrens, S. (2021). Bimetallic Pd/Sn‐based Nanoparticles and their Catalytic Properties in the Semihydrogenation of Diphenylacetylene. ChemistryOpen, 10 (2), 296–304. doi:10.1002/open.202000298
Zengel, D.; Stehle, M.; Deutschmann, O.; Casapu, M.; Grunwaldt, J.-D. (2021). Impact of gas phase reactions and catalyst poisons on the NH₃-SCR activity of a V₂O₅-WO₃/TiO₂ catalyst at pre-turbine position. Applied catalysis / B, 288, Article no: 119991. doi:10.1016/j.apcatb.2021.119991
Naina, V. R.; Wang, S.; Sharapa, D. I.; Zimmermann, M.; Hähsler, M.; Niebl-Eibenstein, L.; Wang, J.; Wöll, C.; Wang, Y.; Singh, S. K.; Studt, F.; Behrens, S. (2021). Shape-Selective Synthesis of Intermetallic Pd₃Pb Nanocrystals and Enhanced Catalytic Properties in the Direct Synthesis of Hydrogen Peroxide. ACS catalysis, 11 (4), 2288–2301. doi:10.1021/acscatal.0c03561
Bakhshan, M.; Wörner, M.; Dadvand, A. (2021). Simulation of droplet impingement on a rigid square obstacle in a microchannel using multiphase lattice Boltzmann method. Computational Particle Mechanics, 95. doi:10.1007/s40571-020-00384-9
Karp, S. G.; Medina, J. D. C.; Letti, L. A. J.; Woiciechowski, A. L.; Carvalho, J. C. de; Schmitt, C. C.; Oliveira Penha, R. de; Kumlehn, G. S.; Soccol, C. R. (2021). Bioeconomy and biofuels: the case of sugarcane ethanol in Brazil. Biofuels, Bioproducts and Biorefining, 15 (3), 899–912. doi:10.1002/bbb.2195
Zengel, D.; Barth, S.; Casapu, M.; Grunwaldt, J.-D. (2021). The Impact of Pressure and Hydrocarbons on NOx Abatement over Cu- and Fe-Zeolites at Pre-Turbocharger Position. Catalysts, 11 (3), 336. doi:10.3390/catal11030336
Sprenger, P.; Stehle, M.; Gaur, A.; Weiß, J.; Brueckner, D.; Zhang, Y.; Garrevoet, J.; Suuronen, J.-P.; Thomann, M.; Fischer, A.; Grunwaldt, J.-D.; Sheppard, T. L. (2021). Chemical imaging of mixed metal oxide catalysts for propylene oxidation: from model binary systems to complex multicomponent systems. ChemCatChem, 13 (10), 2483–2493. doi:10.1002/cctc.202100054
Wörner, M.; Samkhaniani, N.; Cai, X.; Wu, Y.; Majumdar, A.; Marschall, H.; Frohnapfel, B.; Deutschmann, O. (2021). Spreading and rebound dynamics of sub-millimetre urea-water-solution droplets impinging on substrates of varying wettability. Applied mathematical modelling, 95, 53–73. doi:10.1016/j.apm.2021.01.038
Eggart, D.; Zimina, A.; Cavusoglu, G.; Casapu, M.; Doronkin, D. E.; Lomachenko, K. A.; Grunwaldt, J.-D. (2021). Versatile and high temperature spectroscopic cell for operando fluorescence and transmission x-ray absorption spectroscopic studies of heterogeneous catalysts. Review of scientific instruments, 92 (2), Art.-Nr. 023106. doi:10.1063/5.0038428
Wild, S.; Polierer, S.; Zevaco, T. A.; Guse, D.; Kind, M.; Pitter, S.; Delgado, K. H.; Sauer, J. (2021). Direct DME synthesis on CZZ/H-FER from variable CO/CO syngas feeds. RSC Advances, 11 (5), 2556–2564. doi:10.1039/d0ra09754c
Goodman, E. D.; Carlson, E. Z.; Dietze, E. M.; Tahsini, N.; Johnson, A.; Aitbekova, A.; Nguyen Taylor, T.; Plessow, P. N.; Cargnello, M. (2021). Size-controlled nanocrystals reveal spatial dependence and severity of nanoparticle coalescence and Ostwald ripening in sintering phenomena. Nanoscale, 13 (2), 930–938. doi:10.1039/d0nr07960j
Dusold, C.; Sharapa, D. I.; Hampel, F.; Hirsch, A. (2021). π‐Extended Diaza[7]helicenes by Hybridization of Naphthalene Diimides and Hexa‐peri‐hexabenzocoronenes. Chemistry - a European journal, 27 (7), 2332–2341. doi:10.1002/chem.202003402
Deschner, B. J.; Doronkin, D. E.; Sheppard, T. L.; Zimina, A.; Grunwaldt, J.-D.; Dittmeyer, R. (2021). Effect of Selectivity Enhancers on the Structure of Palladium during High-Pressure Continuous-Flow Direct Synthesis of Hydrogen Peroxide in Ethanol. The journal of physical chemistry <Washington, DC> / C, 125 (6), 3451–3462. doi:10.1021/acs.jpcc.0c11246
Konnerth, P.; Jung, D.; Straten, J. W.; Raffelt, K.; Kruse, A. (2021). Metal oxide-doped activated carbons from bakery waste and coffee grounds for application in supercapacitors. Materials science for energy technologies, 4, 69–80. doi:10.1016/j.mset.2020.12.008
Amsler, J.; Plessow, P. N.; Studt, F. (2021). Effect of Impurities on the Initiation of the Methanol-to-Olefins Process: Kinetic Modeling Based on Ab Initio Rate Constants. Catalysis letters, 15 (9), 2595–2602. doi:10.1007/s10562-020-03492-6